Бабаш А.В.

НИУ ВШЭ, РЭУ им. Г.В. Плеханова.

Дешифруем или недешифруем шифр случайного гаммирования

Для описания ШСГ фиксируем алфавит I естественного языка, алфавит К ключа и шифрованного текста Ү. Положим I = K = Y = Z / s - кольцо положительных вычетов по модулю s. Обозначим через $M(d) \subset I^d$ множество d-грамм содержательных текстов в алфавите I. Предполагаем, что на M(d) заданы правила конкатенации d-грамм для получения содержательных (читаемых) текстов произвольной длины. Через $i + \gamma = y \mod s$ обозначим функцию шифрования ШСГ для букв $i \in I, \gamma \in K, y \in Y$.

Для шифрования открытого текста $\mathfrak{J}_{j}^{v}=i_{j}^{v}i_{j+1}^{v}...i_{j+d-1}^{v}$ из I^{d} выбирается случайно и равновероятно ключ $\Gamma_{i}^{v} = \gamma_{i}^{v} \gamma_{i+1}^{v} ... \gamma_{i+d-1}^{v}$ проводится операция $\mathfrak{I}_{i}^{v} + \Gamma_{i}^{v} = U_{i}^{v} = y_{i}^{v} y_{i+1}^{v} ... y_{i+d-1}^{v}$, где $i_{j+k}^{\nu} + \gamma_{j+k}^{\nu} = y_{j+k}^{\nu} \mod s, \quad k \in \{0, 1, ...d - 1\}.$

Обозначение операции обратного элемента кольца перенесем и на $(Z/s)^d$. Основой атаки является уравнение $\mathfrak{F}^v_j - \mathfrak{F}^v_{j'} = U^v_j - U^v_{j'} + q$ с тремя неизвестными, где $q = \Gamma^v_{j'} - \Gamma^v_j$.

Совершенность шифра

х – открытый текст, k – ключ, у – шифрованный текст

P(x/y)=P(x) для любых x, y - COBEPШЕННОСТЬ по нападению на открытый текст (К.Шеннон)

P(к/y)=P(x) для любых x, y - COBEPШЕННОСТЬ по нападению на ключ

Рассмотрим модель ШСГ с указанными алфавитами для шифрования содержательных текстов $M=\{0,1\}$. Пусть команда 0 поступает на шифр с вероятностью p(0), а команда 1 с вероятностью $p(1) \neq p(0)$. Легко проверить, что этот шифр является совершенным по нападению на открытый текст и, следовательно, недешифруем. И несовершенным по ключу и, следовательно, дешифруем

Модель Определение. шифра является дешифруемой, если для нее найдена атака определения открытого текста по перехвату шифрованного текста с конечной трудоемкостью и надежностью, превышающей надежность метода угадывания. В противном случае, модель шифра называется недешифруемой.

Атака

Предварительный этап атаки на ШСГ. Разобьем множество упорядоченных пар элементов из $M(d)^2$ на классы $[\mathfrak{I}-\mathfrak{I}']_a$ упорядоченных пар $\mathfrak{I},\mathfrak{I}'$ с фиксированной разностью $\mathfrak{I}+(-\mathfrak{I}')=a,$ $a \in (Z/s)^d$. Через А обозначим множество индексов не пустых классов $[\mathfrak{I} - \mathfrak{I}']_a$.

Атака. Пусть неизвестный содержательный текст $i_1i_2...i_I$ зашифрован на ШСГ неизвестным ключом $\gamma_1 \gamma_2 ... \gamma_L$ и получен известный шифрованный текст $y_1y_2...y_I$. Задача состоит в однозначном определении какой ни будь одной пары D-грамм $\mathfrak{I}_{j} = i_{j}i_{j+1}...i_{j+D-1}, \ \mathfrak{I}_{j'} = i_{j'}i_{j'+1}...i_{j'+D-1}$ содержательного зашифрованного текста $i_1 i_2 ... i_L$ по шифрованному тексту $y_1y_2...y_L$. Положим $2D \le L$, $D = vd + r, 0 \le r < d, d > 1$. Фиксируем $q \in I^d$ и его начало \tilde{q} длины \mathbf{r} .

Шаг 1. Для каждой пары номеров j, j', j < j' dграмм $U_{i}, U_{i'}$ шифрованного текста проводим последовательность действий (1): $j,j' \Rightarrow b_{j,j'} \Rightarrow [j,j']_b \leftrightarrow [\Im - \Im']_{a=b_{i,j'}},$ которая означает: для пары j, j' вычисляется $b_{i,i'} = U_i - U_{i'} + q;$ по значению $b_{i,i'}$ находится класс $[\Im - \Im']_a$ индексированный $a = b_{i,i'}$ и класс $[j,j']_b$ пар j,j' с данным значением $b=b_{j,j'}$. Обозначим через B множество возможных значений $b_{i,i'}$.

Положим $A_d(J,J') = \bigcup_{b \in A \cap R} [j,j']_b$ и через $A_{_{\!\scriptscriptstyle{W}}}(J,J')$ обозначим множество пар позиций с найденными на них возможными содержательными текстами длины w. Предполагается, что в дальнейшем мы используем лишь такие пары индексов. Очевидно, что $|A_d(J,J')| \le \frac{(L-d+1)(L-d)}{2} = T_1.$ Трудоемкость

шага 1 есть число операций последовательных действий по цепочкам, оно равно T_1 .

Шаг 2. В последовательности действий (1) для активных пар позиций j, j' имеются и соответствия:

$$j+d,j'+d \Rightarrow b_{j+d,j'+d} \Rightarrow [j,j']_{b_{j+d,j'+d}} \leftrightarrow [\mathfrak{I}-\mathfrak{I}']_{a=b_{j+d,j'+d}}.$$

Получение возможных 2d-грамм содержательных текстов для каждого $b \in A \cap B$ и каждой пары $(j,j') \in [j,j',q]_b$ формализуем цепочкой соответствий

$$b \Rightarrow j, j' \Rightarrow bb_{j+d,j'+d} \Rightarrow [\mathfrak{I} - \mathfrak{I}']_b [\overline{\mathfrak{I}} - \overline{\mathfrak{I}}']_{b_{j+d,j'+d}}.$$

Последняя компонента цепочки есть обозначение класса 2d-грамм полученных правилами конкатенации элементов из $[\mathfrak{I}-\mathfrak{I}']_b$ с элементами из $[\overline{\mathfrak{I}}-\overline{\mathfrak{I}}']_{b_{i+d-i'+d}}$.

Трудоемкость получения 2d-грамм не больше чем

$$\sum_{b \in A \cap B_1} \sum_{(j,j') \in [j,j',q]_b} |[\mathfrak{T} - \mathfrak{T}']_b| \cdot |[\bar{\mathfrak{T}} - \bar{\mathfrak{T}}']_{b_{j+d,j'+d}}| \le$$

$$\leq |A_d(J,J')||M(d)|^2$$

конкатенаций и в среднем левая часть не превосходит

$$A_d(J,J')\cdot (T_1\cdot \frac{1}{|I|^d})^2.$$

Продолжая аналогично будут найдены все возможные пары vd-грамм содержательного текста $\overline{\mathfrak{I}}, \overline{\mathfrak{I}}',$ начинающихся с позиций $(j, j') \in A_{vd}(JJ')$, либо метод закончит работу раньше не найдя приемлемых конкатенаций. Трудоемкость получения пар vd-грамм открытого текста $\tilde{\overline{\mathfrak{J}}}, \tilde{\overline{\mathfrak{J}}}'$ не превосходит $(v-1)(|A_{vd}(J,J')|\cdot |M(d)|^2)$ конкатенаций.

Шаг 3. Этот шаг аналогичен шагу 2. Его трудоемкость не больше $r \cdot (|A_{vd}(J,J')| \cdot |M(d)|^2)$ конкатенаций. Трудоемкость всей атаки не превосходит величины $T_1 + (v + r - 1) \cdot (|A_d(J,J')| \cdot |M(d)|^2$ в случае заданного конкретного шифртекста. а в среднем, не больше

$$T_1 + (vd + r - 1) \cdot |A_d(J, J')| \cdot (T_1 \cdot \frac{1}{|I|^d})^2 \le$$

$$\leq T_1 \cdot (1 + (vd + r - 1) \cdot (T_1 \cdot \frac{1}{|I|^d})^2).$$

В результате атаки будет найдена по крайней мере одна пара индексов j, j' с множеством возможных пар содержательных текстов содержащим истинную пару \mathfrak{I}_{i} , $\mathfrak{I}_{i'}$ D-грамм. Надежность атаки равна вероятности наличия двух D-грамм $\Gamma_{i}, \Gamma_{i'}, j < j'$ в ключе $\Gamma_{j'} - \Gamma_{j} = qq...q\tilde{q}$. Для q = 0 эта вероятность известна как вероятность $P(k = L - d + 1, n = |I|^D)$ двух одинаковых дней рождений.

$$P_D \le \prod_{c=0}^{D-d+1} P(b_{j+c,j'+c} \in A) \le (\frac{|A|}{|I|^d})^{D-d+1}$$
 вероятность

ложного решения